China's 2020 carbon intensity target: Consistency, implementations, and policy implications

Jiahai Yuana, Yong Houb, Ming Xuc,d,*

a School of Economics and Management, North China Electric Power University, Beijing, China
b China Electricity Council, Beijing, China
c School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
d Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA

\textbf{ABSTRACT}

China has pledged to reduce its CO\textsubscript{2} emissions per unit of GDP by 40–45% by 2020 as of 2005 level. This research examines China's 2020 carbon intensity target and its interdependence with the overarching national economic and social development goals. The results show that, with annual GDP growth rate at 7% during the 12th Five-Year-Plan (FYP) period and 6% during the 13th FYP period, the 45% CO\textsubscript{2} intensity reduction target implies annual CO\textsubscript{2} emissions of 8600 million tonnes by 2020, close to 8400 million tonnes, the UNFCCC 450 ppm scenario for China. However, achieving only the 40% reduction target will lead to 9380 million tonnes CO\textsubscript{2} emissions in 2020 which largely surpass the UNFCCC 450 ppm scenario. We conclude that China's 45% CO\textsubscript{2} intensity reduction target is not only within international expectations but also self-consistent with its overall economic and social development strategy. Then primary energy and power planning for implementing the 45% carbon intensity reduction target is proposed. Related investment requirements are also estimated. To achieve the target, China needs to restructure the economic structure for significant improvements in energy conservation.

*Corresponding author at: University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, MI 48109, USA. Tel.: +1 763/734 8644.
E-mail address: mingxu@umich.edu (M. Xu).

© 2012 Elsevier Ltd. All rights reserved.

colors
intensity) by 40–45% from the 2005 level and increase the share of non-fossil energy in primary energy to 15% by 2020 [1]. Given the role that China is playing in global climate change governance, the pledge has instigated a number of studies in literature since its announcement. Zhang challenged the reliability of government statistics as well as the central government’s ability to achieve these targets, given that China has faced great difficulty meeting its 2010 energy-saving goals [2,3]. Michinori et al. criticized the ambiguity of the target, but argued that the pledge is consistent with China's domestic agenda to pursue economic growth and energy security [4]. Later studies mainly focused on the feasibility of these targets and pathways to realize them. Stern and Jotzo used a stochastic frontier model to decompose China's energy intensity targets concluding that the targets are par with those implicit in the US and EU targets and China needs ambitious policies to achieve these targets [5]. He et al. compiled scenarios for China’s energy related carbon emissions and concluded that, besides developing renewable and nuclear energy, the “energy conservation first” policy and adjustment in economic output structure are of policy priority [6]. Steckel et al. used the Kaya-decomposition method to examine the growth of CO2 emissions in China and the contribution of three underlying drivers including economic growth, energy intensity change, and the dominance of coal in energy mix [7]. Dai et al. affirmed the feasibility of these targets with affordable costs using a hybrid AIM/CGE model [8]. Zhou et al. used an output-based method to study the carbon allocation issue in China, while Yi et al. studied the allocation issue from a regional perspective [9,10]. Wang et al. explored low carbon solutions in provincial level using two provinces, Fujian and Anhui, as case studies [11].

In March 2011, China formulated the intermediate targets to reduce CO2 intensity by 17% from the 2010 level and increase the share of non-fossil energy to 11.4% by 2015, the end of the 12th Five-Year-Plan (FYP) [12]. Naturally, the following questions are of great importance to both China’s energy policy and international climate governance: 1) Are China’s 12th FYP intermediate targets consistent with its 2020 targets? 2) Is China’s 2020 carbon reduction target consistent with its economic growth target, given Chinese government’s “building a well-off society in an all-around way at 2020” plan? 3) Is China’s carbon reduction target within the international expectations on China’s responsibility in global GHG stabilization? 4) What is the viable primary energy and power planning for China to facilitate the realization of these targets? Although existing literature addressed important aspects of China’s climate and energy targets such as credibility, ambitiousness, feasibility, and possible policy solutions, the abovementioned issues remain largely uncovered. This research is an attempt to fill in these research and knowledge gaps.

The layout of the paper is as follows. Section 2 introduces background information on energy and climate policies in China. Section 3 projects CO2 emissions under different economic and social development scenarios and different carbon intensity trajectories. Section 4 develops the primary energy and power planning in line with the carbon intensity targets. Section 5 concludes.

2. Energy and climate policies in China

Since 1971–2007, population in China had increased from 841 to 1320 million, while the economy began to take off since 1979 with GDP growing for more than 12-fold from 183 to 2387 billion US dollars (2000 price and hereafter) (Fig. 1) [13]. This in turn results in an almost 10-fold increase of per capita GDP, from 186 US dollars in 1980 to 1808 in 2007.

China’s economic growth is anything but balanced. Being “capital intensive and industry dominated”, the breath-taking growth has been fueled by extensive energy consumption. Primary energy consumption has increased from 392 in 1971 to 1956 million tonnes oil equivalent (toe) in 2007, a more than five-fold growth (Fig. 1). In a sense, China has successfully managed to fuel the economic growth with less growth in energy consumption, at least during the 1979–2000 periods when economy grew more than six-fold with only less than doubled primary energy consumption (Fig. 2). However, energy intensity has been increased since China’s entry into the WTO in 2001 (Fig. 3). In 2005, energy intensity was about 4% higher than that in 2002, in spite of significant reduction achieved since 2005 [14]. Increasing energy consumption driven by rapid economic growth has led to increasing CO2 emissions in China. Ever since 2003, China has contributed more than half of global CO2 emission increase [7]. In 2007, China has surpassed the US becoming the world’s largest CO2 producer, putting China in a unique position in international negotiation on GHG reduction [13]. Recent data showed that growth of energy production and consumption in China has outpaced many recent reputable predictions [15,16]. CO2 intensity follows a reverse trend similar to energy intensity during the recent years. According to [17], three factors are underlying the reversal including the structural bias towards energy intensive heavy industry, a slowdown of technology progress, and a return to coal as the main energy resource. These factors exacerbated concerns not only about domestic energy security, resource scarcity, and environmental pollution, but also towards global GHG stabilization and reduction.

To fulfill its international responsibility in climate mitigation and, more importantly, reduce dependence on fossil fuels for domestic economic growth, in the long term, the Chinese government has pledged to reduce its CO2 intensity by 40–45% from the 2005 level and increase the share of non-fossil energy in primary energy to 15% by 2020. In the short term, the central government plans to reduce CO2 intensity by 17% from the 2010 level and increase the share of non-fossil energy to 11.4% by 2015 in the 12th FYP. To meet these targets, the Chinese government has formulated and implemented extensive energy and climate policies (Table 1). In general, these policies address the energy and climate challenges China is facing from two aspects: developing renewable energy and improving energy efficiency. China has been the world’s largest investor in renewable energy in 2010, mainly driven by its gigantic investment in wind energy. Saving energy in electric power and manufacturing sectors, especially energy-intensive sectors such as steel, cement, and chemical product, etc., is the current focus of energy efficiency policy, while in the future saving energy in building and transportation sectors will be added to the policy mix [12]. More details on the progress of energy conservation policy and renewable energy development during the 11th FYP can be referred to [18–20].

Renewable energy has great potential in China (Table 2) [21]. A Pew Charitable Trusts report revealed that China led other G-20 members in clean energy investment in the amount of $34.6 billion [22] in 2010. In particular, wind power has experienced spectacular growth in China during the 11th FYP. Despite still marginal share in total generation mix, the actual installation of wind power increased from 1 GW in 2005 to 45 GW in 2010, ranking China top in the world on installed wind power capacity. Second, improving energy efficiency in the power sector has been and will continue to be the key of China’s energy and climate policy. The past two decades have witnessed rapid electrification in China with electrification level increasing from 9% in 1990 to 20% in 2009 [23]. Meanwhile, electricity consumption has experienced a seven-fold growth, remarkably faster than the growth of primary energy consumption (Fig. 3). However, there is still huge gap for China to catch up with its developed counterparts in terms of per capita power consumption. Power generation capacity also experienced rapid growth to meet the increasing power demand. Especially since 2002, when the power sector reform started, the construction of new
capacity has established new record in the world power history with yearly new addition of installed capacity ranging between 60 and 100 GW. Dominated by coal (Fig. 4), power generation in China alone consumed about 1.6 billion tonnes crude coal, accounting for 49% of China’s total coal production in 2010. As the result, the power sector is the largest CO2 producer in China, accounting for about 45% of total CO2 emissions, as well as 45.2% and 45.4% of the country’s total SO2 and particulate emissions, respectively.

Given the great challenges and uncertainties facing China’s future energy supply and demand, understanding options and pathways to meet both short and long term energy and climate targets becomes crucial for China’s policy making as well as international climate governance. We examine this by designing a series of carbon emission scenarios for China which are presented in the next section.

3. Carbon emission projection

3.1. Assumptions and scenarios

GDP growth projection and CO2 intensity are the two driving variables for compiling carbon emission scenarios. Given the planned economic growth rate and carbon intensity reduction targets, the total carbon emissions caused by energy consumption can be calculated as

\[\text{Carbon emissions} = \text{GDP} \times \text{GDP carbon intensity} \]

The scenarios are compiled in the following ways: 1) GDP growth towards 2015 is projected based on the 12th FYP [12], with an planned annual growth of 7%, while GDP growth towards 2020 is projected in line with Chinese government’s 2020 long-term vision with an annual growth rate of 6%; 2) CO2 intensities in 2015 and 2020 are calculated according to the proposed emission reduction targets. Two scenarios, C40 and C45, are compiled to represent 40% and 45% carbon intensity reduction by 2020, respectively. Finally, as revealed by [7], GDP growth rate is the most important factor on carbon emissions in China. Thus two alternative scenarios are compiled with GDP growth rate one percent point higher than that in C40 and C45; and 3) a reference scenario is compiled based on the UNFCCC 450 ppm scenario for examining the feasibility and desirability of China’s target from an international perspective [26]. In particular, from 1996 to 2005, carbon intensity in China experienced an annual decrease of 3%. However from 2003 an upward trend was witnessed because of

![Fig. 1. GDP, population, energy consumption and CO2 emissions in China, 1971–2007. Source: [13].](image-url)
the economic output structure and increasing share of coal in primary energy mix [7]. Because of the intensive policy formulation and implementation, the trend of carbon intensity has already been reversed since 2006. Therefore we assume that, without active policy interventions since 2006, carbon intensity would annually decrease by 1.5% for the 2006–10 period, 2.5% for the 2010–15 period, and 3% for the 2016–20 period.

To address the data quality issue highlighted by [2], data used for scenario compilation in this study are obtained from reputable international agencies as much as possible. Historical data for 2007 and earlier are from UNFCCC2009 [13], while data covering the 2008–2010 period are from NBSC statistics yearbooks or statistics communiqués because of the unavailability of international statistics [26,27].

According to UNFCCC2009, in 2005 China’s CO₂ intensity was 2.67 kg CO₂ per US$ (2000 constant price and hereafter). Accordingly, it ranges between 1.47 and 1.60 kg CO₂ per US$ in 2020 under the 40% and 45% reduction targets, respectively.

As a medium target, China plans to decrease carbon intensity by 17% at 2015 as of 2010 level. However, there is yet no official data by Chinese government or international institution reporting China’s 2010 carbon emissions or intensity. Thus we first estimated the 2010 carbon intensity for China according to the publically available consumption data of coal, oil, gas and production of
We use currently available primary energy carbon emission factors from 2005 to 2008 by IEA and primary energy consumption structure by NBSC for the estimation based on Eqs. (2) and (3). The emission factors are reported in Table 3 while the 2010 primary energy carbon emission factor is reported in Table 4.

GDP carbon intensity

\[
\text{GDP carbon intensity} = \frac{\text{carbon emissions}}{\text{GDP}} \times \frac{\text{primary energy consumption}}{\text{GDP energy intensity}} \times \text{carbon emission factor of primary energy consumption}
\]

Carbon emission factor of primary energy consumption

\[
= \sum (\text{primary energy consumption share} \times \text{fuel emission factor})
\]

CO₂ emissions of China in 2010 are estimated at 6852 Mt. According to the projected GDP growth and carbon intensity targets, in 2015 China's total CO₂ emissions would reach to 7976 Mt, while in 2020 it would be 8601 and 9382 Mt under C45 and C40 scenarios, respectively. Under reference scenario without new active abatement measures based on UNFCC09, China's carbon emissions would be 9600 Mt, while 8400 Mt under the 450 ppm scenario [26]. Fig. 5 shows the trajectories of China's carbon emissions to 2020 under different scenarios.

Table 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Policy</th>
<th>Date effective</th>
<th>Responsible agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laws</td>
<td>Formulation of the Renewable Energy Law</td>
<td>January 2006</td>
<td>National People's Congress (NPC)</td>
</tr>
<tr>
<td></td>
<td>Revision of the Energy Conservation Law</td>
<td>October 2007</td>
<td>NPC and National Development and Reform Committee (NDRC)</td>
</tr>
<tr>
<td>Comprehensive policies</td>
<td>Medium and long-term plan for energy conservation 11th FYP</td>
<td>2005</td>
<td>NDRC</td>
</tr>
<tr>
<td></td>
<td>The State Council decision on strengthening energy conservation 11th Five-year energy development plan</td>
<td>March 2006</td>
<td>NDRC</td>
</tr>
<tr>
<td></td>
<td>Implementation program of 10 key projects during 11th FYP</td>
<td>August 2006</td>
<td>State Council</td>
</tr>
<tr>
<td></td>
<td>Medium and-long-term plan for renewable energy development</td>
<td>October 2006</td>
<td>NDRC</td>
</tr>
<tr>
<td></td>
<td>State Council yearly energy conservation plan</td>
<td>August 2007</td>
<td>NDRC</td>
</tr>
<tr>
<td>Fiscal policies</td>
<td>Reduced export tax rebate for low value-added and energy intensive products</td>
<td>September 2009</td>
<td>NDRC and Ministry of Finance (MOF)</td>
</tr>
<tr>
<td></td>
<td>Interim management measures for incentive to energy conservation technology reform and phase-out program</td>
<td>July 2008</td>
<td>State administration of Tax</td>
</tr>
<tr>
<td>Buildings</td>
<td>Top-1000 energy-consuming enterprises program</td>
<td>January 2009</td>
<td>NDRC</td>
</tr>
<tr>
<td></td>
<td>National energy efficiency design standard for public buildings</td>
<td>April 2006</td>
<td>NDRC</td>
</tr>
<tr>
<td></td>
<td>Interim administrative method for incentive funds for heating metering and energy efficiency retrofitting for existing residential buildings in China's northern heating areas</td>
<td>2007</td>
<td>MOF</td>
</tr>
<tr>
<td>Appliances</td>
<td>Appliances standard and labeling</td>
<td>Various years</td>
<td>General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ)</td>
</tr>
<tr>
<td>Transportation</td>
<td>Government procurement program</td>
<td>2005–2007</td>
<td>NDRC and MOF</td>
</tr>
<tr>
<td></td>
<td>Fuel consumption limits for passenger cars</td>
<td>2004</td>
<td>AQSQ</td>
</tr>
<tr>
<td></td>
<td>Revised consumption tax for large energy-inefficient vehicles</td>
<td>April 2006</td>
<td>MOF, State administration of Tax</td>
</tr>
<tr>
<td></td>
<td>National phase III vehicles emission standards</td>
<td>July 2007</td>
<td>Ministry of Environment Protection (MEP)</td>
</tr>
<tr>
<td></td>
<td>Pilot popularization program on energy conservation and new energy vehicles</td>
<td>2009</td>
<td>MOF, Ministry of Science and Technology (MOST)</td>
</tr>
</tbody>
</table>

Note: revised by authors based on [18] with updated policy release.

Table 2

<table>
<thead>
<tr>
<th>Energy source</th>
<th>Available resource</th>
<th>Annual generation potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydropower</td>
<td>390 GW (125 GW small hydro)</td>
<td>1700 TWh</td>
</tr>
<tr>
<td>Wind power</td>
<td>10 m high attitude: 250 GW (onshore); 750 GW (offshore); 50 m high attitude: 2000–2500 GW</td>
<td>2000 TWh (10 m) 4000–5000 TWh (50 m)</td>
</tr>
<tr>
<td>Solar</td>
<td>2200 sunshine hours with 5000 MJ/sq.m for 2/3 land area</td>
<td>128,000 TWh (85.14 million sq. km desert)</td>
</tr>
<tr>
<td>Biomass</td>
<td>600–700 Mt/annual</td>
<td>1500–1750 TWh</td>
</tr>
</tbody>
</table>

Note: revised by authors based on [18] with updated policy release.

We use currently available primary energy carbon emission factors from 2005 to 2008 by IEA and primary energy consumption structure by NBSC for the estimation based on Eqs. (2) and (3). The emission factors are reported in Table 3 while the 2010 primary energy carbon emission factor is reported in Table 4.
3.2. Primary energy supply mix

Given the government’s 2015 and 2020 non-fossil energy development targets, fossil-based energy will continue playing a critical role in China’s primary energy supply. The coal reserve in China could be exploited for more than 100 years under the current production and consumption rate, while the remaining proven recoverable reserves of crude oil and natural gas could be exploited for only 20 years and 37 years, respectively [31]. However, the exploration on gas reserves (including technically recoverable coal bed methane and methane hydrate reserves) in recently years has encouraging progress and may significantly expand its exploitable time [14,32–35]. Because CO₂ emission factor of natural gas is significantly lower than that of coal, gas supply growth could contribute to China’s low carbon development and reduce China’s reliance on oil import.

Let \(x \) and \(y \) represent the share of coal and natural gas, respectively, in total primary energy supply in 2015. Because the fossil-based primary energy is planned to be 88.6% in 2015, the primary energy emission factor \(f \) can be expressed as

\[
f = x f_{\text{coal}} + (0.886 - x - y) f_{\text{oil}} + y f_{\text{gas}}
\]

(4)

where 0.886 \(\geq x \), \(y \geq 0 \); 0.886 \(\geq x + y \geq 0 \); and \(f_{\text{coal}}, f_{\text{oil}}, \) and \(f_{\text{gas}} \) stand for emission factors for coal, oil, and natural gas in tonne/toe as shown in Table 3. Thus,

\[
f = 3.53x + 2.7(0.886 - x - y) + 2.06y = 0.83x - 0.64y + 2.39
\]

Similarly, for 2020, given the planned non-fossil energy is 15%,

\[
f = 3.53x + 2.7(0.886 - x - y) + 2.06y = 0.83x - 0.64y + 2.30
\]

To minimize \(f \), the primary energy emission factor, smaller \(x \) (share of coal) and larger \(y \) (share of natural gas) are desired, implying to reduce the share of coal and increase the share of natural gas in the primary energy mix. The optimized solution would be as large share of gas as possible. However, considering the reality that there is huge inertia in energy system, construction of extraction and transportation infrastructure for gas needs lead times of several years, and there is strong demand for oil because of increasing private vehicle ownership, it is assumed that oil share would drop slightly and the share of gas would increase only gradually in the coming decade.

3.3. Discussions on the carbon emissions study

According to the above carbon emissions scenarios analysis, the following conclusions can be drawn: 1) the carbon intensity targets proposed by Chinese government are consistent with the macro-level economic and social development planning; and 2) the 45% reduction target is in line with international expectations on China’s responsibility of carbon stabilization under the 450 ppm scenario. However, there is great uncertainty regarding the second conclusion because heavy burden is imposed for the 45% reduction target in line with international expectations on China’s responsibility of carbon stabilization under the 450 ppm scenario.
The good news is that under the planned economic growth rate, if the 45% carbon intensity reduction target is realized, China’s annual CO2 emission by 2020 would likely stay close to the international expectations. China’s CO2 emissions would be flat after 2015 because of efforts on improving energy efficiency and developing non-fossil energy. On the other side, the bad news is that if economic growth were faster than planned (one percent point faster than planned), which is very likely to happen given China’s conspicuous economic growth achievement in the past three decades, a 40% decrease in carbon intensity would result in total CO2 emissions at 10,302 Mt in 2020, while the remaining 1349 Mt would come from a reduction in energy intensity. During the 2015–2020 period, GDP growth would result in 2697 Mt CO2 emissions, while a 454 Mt reduction could from primary energy structure (15% non-fossil energy share) and another 1616 Mt reduction could from the reduction of energy intensity (Table 5).

The implication is that, from 2010 to 2015, reduction of 1349 Mt CO2 emissions or primary energy conservation in the amount of 450 million toe (640 million tce) needs to be realized. From 2015 to 2020, reduction of 1616 Mt CO2 emissions or 545 million toe (780 million tce) primary energy conservation needs to be realized from energy efficiency enhancement, which would come mainly from technology advancement and structural adjustment. In this paper, we assume that the current policy in the power and manufacturing sectors during the 11th FYP will continue, while similar policy will be implemented in building and transportation sectors. Thus the energy conservation plan is mainly drafted from four sectors: power, manufacturing, building, and transportation. Finally we attribute the gap with the primary energy conservation goal to economic restructuring. In the manufacturing sector, decrease in energy intensity would contribute most to energy conservation, considering the existing large gap of energy intensity of main energy-intensive manufacturing, building, and transportation. Finally we attribute the gap with the primary energy conservation goal to economic restructuring. In the manufacturing sector, decrease in energy intensity would contribute most to energy conservation, considering the existing large gap of energy intensity of main energy-intensive products between China and international best practices [35,36] as shown in Table 6. The production scale of different products is projected for energy conservation potential estimate based on different predictions as shown in Fig. 6 [37–39]. Energy conservation in buildings mainly comes from green lighting, efficient appliances, and improved Heating Ventilating and Air Conditioning (HVAC) system. In the transportation sector, energy saving comes from improving fuel economy in traditional vehicles, penetration of hybrid and electric vehicles, and the substitution of private transportation by public transportation. In the coal mining sector, the recovery and utilization of coal bed methane could contribute significantly to energy conservation. According to various estimates, there is 30 million tce potential during the 12th FYP if only 20% of the technologically feasible methane with density below 30% is utilized. Another 30 million tce would be possible if the recovery rate increases to 40% during the 13th FYP. While large portion of the

4. Primary energy and power planning

4.1. Requirements on energy efficiency and economic restructuring

To realize the proposed CO2 intensity reduction targets, energy conservation by efficiency enhancement and economic restructuring would be of first priorities. A decomposition analysis indicates that, without decrease in energy intensity and primary energy emission factor, growth in GDP would result in 2757 Mt CO2 emissions from 2010 to 2015. To keep the total CO2 emissions under 1124 Mt to meet the intermediate target, the 11.4% non-fossil energy share could contribute a decrease of 284 Mt, while the remaining 1349 Mt would come from a reduction in energy intensity. During the 2015–2020 period, GDP growth would result in 2697 Mt CO2 emissions, while a 454 Mt reduction could from primary energy structure (15% non-fossil energy share) and another 1616 Mt reduction could from the reduction of energy intensity (Table 5).
energy conservation potential would come from energy efficiency improvement in manufacturing, building, and transportation, the remaining would come from economic restructuring, i.e., output structure toward service industry and the light of manufacturing, especially in the 13th FYP (Table 7). It would thus pose a tremendous challenge for China to realize the CO₂ intensity reduction target considering that historically the influence of structural effect on carbon growth has never been negative ever since 1990s [40].

According to [18], during the 11th FYP, energy efficiency policy in China has been restricted by issues of deficiency in institution design, lack of systematic policy implementation, discordance between energy conservation goal and development pattern, and most importantly, lack of coordination between market mechanism and command-and-control. Chinese government has been heavily relies upon command-and-control as the main policy instrument. As the market mechanism becomes more and more dominate in Chinese economy, the effectiveness of command-and-control policy has been significantly weakened. Though our analysis indicates that it is possible to realize even more ambitious energy conservation target in the coming decade, China needs to first address the above issues properly to assure the effectiveness of its policy instruments.

Furthermore, the transition of economic growth to a quality-oriented pattern, which is beyond the scope of energy policy, will certainly pose larger challenge to China’s energy sustainability.

4.2. Primary energy planning

The basic assumptions underlying primary energy planning are:

- The share of fossil fuel for coal, oil and gas is set as 65.1:18:5.5 at 2015 and 60.5:17.5:7 at 2020.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement (kWh/tonne)</td>
<td>140</td>
<td>115</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Steel (kg sce/tonne)</td>
<td>840</td>
<td>600</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>Aluminum (tce/tonne)</td>
<td>9.9</td>
<td>9.55</td>
<td>5.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Ammonia (kg sce/tonne)</td>
<td>1670</td>
<td>1660</td>
<td>1400</td>
<td>1300</td>
</tr>
<tr>
<td>Ethylene (kg sce/tonne)</td>
<td>850</td>
<td>690</td>
<td>600</td>
<td>510</td>
</tr>
<tr>
<td>Oil refinery (kg sce/tonne factor)</td>
<td>14</td>
<td>12.5</td>
<td>11</td>
<td>9.5</td>
</tr>
<tr>
<td>Coal in power generation (grammes sce/KWh)</td>
<td>410</td>
<td>356</td>
<td>315</td>
<td>300</td>
</tr>
</tbody>
</table>

4.3. Power planning

Since most of the renewable energy will be developed for power generation, power planning is central to energy planning.

Fig. 6. Assumption on the production of energy-intensive products for 2015 and 2020 (2007 = 100).
The capacity factor of nuclear power will stabilize at about 80%. The capacity factor of coal will also reach as high as 89% and that of hydropower will reach 42%. The capacity factor of natural gas power will stay at about 35% because it is relatively more expensive and is mainly used for peak generation. Biomass and clean energy development [23]. The capacity factors for different generation technologies are parameterized in Table 9.

We assume that during the planning period, with proper policy formulation and implementation, the wind capacity factor will reach its upper limit and that of coal will also reach as high as 80%. The capacity factor of nuclear power will stabilize at about 80%.
and solar power will keep stable capacity factor during the periods (Table 9).

Accordingly, the power planning for 2010–2020 is compiled and provided in Table 10. Among the gas power plant, in 2015, 7.5 GW units of coal bed gas turbine are included. In 2020, 22.5 GW such units are included. Among the biomass power plants, 5 GW waste heat turbine units in manufacturing industries (for example cement and steel) are included in 2015, while 10 GW such units are included in 2020. We then compile the detailed power planning based on efficiency improvement by closure of small inefficient coal units and the decommissioning projections of the operating coal and hydropower units (Table 11).

4.4. Investment requirements

When calculating the investment requirements, the following assumptions are made: 1) for energy production and conversion sector, only the investment in power generation and power grid will be included. The unit investment cost for matured technology of coal, natural gas, hydropower and nuclear is assumed to be stable, while that of wind, solar and IGCC-CCS is assumed to have a learning effect (Table 12); 2) because of the difficulty of separating the investment on energy efficiency from other purposes in different sectors, only the government’s public money in terms of customer buy-down or investment subsidy will be included (Table 13). And the government input will be calculated according to the current implemented support policy and the projected energy conservation targets in different sectors; and 3) all the investment cost is calculated based on 2010-year constant price RMB.

Accordingly, the investment requirements for implementing the energy planning during 12th and 13th FYP periods are estimated and provided in Table 14. During the 12th FYP period, a total of 5054 billion RMB energy-related investments are estimated, while the power sector alone needs 4267 billion and the rest 787 billion will be energy efficiency investment. During the 13th FYP period, a total of 5611 billion RMB investments are required, 4662 billion for power investment and the rest 950

Table 11
Change in power generation capacity according to the planning. Unit: GW.

<table>
<thead>
<tr>
<th>Periods</th>
<th>Natural gas</th>
<th>Coal</th>
<th>Biomass</th>
<th>Nuclear</th>
<th>Wind</th>
<th>Hydro</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010–2015</td>
<td>Net increase 13.0</td>
<td>52.9</td>
<td>15.0</td>
<td>34.2</td>
<td>47.0</td>
<td>44.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Closure of small units -</td>
<td>-40.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Retirement units -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>New construction 13.0</td>
<td>132.9</td>
<td>15.0</td>
<td>34.2</td>
<td>47.0</td>
<td>54.0</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>2015–2020</td>
<td>Net increase 25.0</td>
<td>61.2</td>
<td>10.0</td>
<td>30.0</td>
<td>88.0</td>
<td>35.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Closure of small units -</td>
<td>-10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Retirement units -</td>
<td>-40.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-10.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>New construction 25.0</td>
<td>111.2</td>
<td>10.0</td>
<td>30.0</td>
<td>88.0</td>
<td>45.0</td>
<td>13.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 12
Unit investment cost for different generation types. Units: RMB/KW.

<table>
<thead>
<tr>
<th>year</th>
<th>IGCC-CCS</th>
<th>Natural gas</th>
<th>Coal</th>
<th>Biomass (waste)</th>
<th>Nuclear</th>
<th>Wind</th>
<th>Hydro</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>11000</td>
<td>7000</td>
<td>3700</td>
<td>6000</td>
<td>15000</td>
<td>8000</td>
<td>10000</td>
<td>20000</td>
</tr>
<tr>
<td>2015</td>
<td>9000</td>
<td>7000</td>
<td>3700</td>
<td>6000</td>
<td>15000</td>
<td>7000</td>
<td>10000</td>
<td>14200</td>
</tr>
<tr>
<td>2020</td>
<td>8000</td>
<td>7000</td>
<td>3700</td>
<td>6000</td>
<td>15000</td>
<td>6000</td>
<td>10000</td>
<td>11600</td>
</tr>
</tbody>
</table>

Notes: 1) unit investment cost for 2010 is sourced from and 2) the investment cost of IGCC-CCS doesn’t include CO2 transportation and storage cost [25].

Table 13
Government subsidy policy and implementation on energy conservation in China.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Subsidy policy</th>
<th>Implementation requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal power</td>
<td>600 RMB/KW for closure of small units</td>
<td>40 GW during 12th FYP periods and 10 GW during 13th FYP periods</td>
</tr>
<tr>
<td>Industry</td>
<td>1000 RMB/tonne sce conservation</td>
<td>240 and 215 million tce conservation capacity during 12th and 13th FYP periods</td>
</tr>
<tr>
<td>Green lighting</td>
<td>30–50% sale price of the bulb to end-users</td>
<td>Popularizing 500 million pieces high efficient lightings in household during 12th and 13th FYP periods, realizing 100% green lighting in all public and commercial buildings</td>
</tr>
<tr>
<td>Building refurbishment</td>
<td>45–55 RMB/m2</td>
<td>Refurbishing 1.2 billion m2 resident space during 12th and 13th FYP periods</td>
</tr>
<tr>
<td>Appliances</td>
<td>Subsidy to end-customers: air conditioner: 300–850 RMB/unit; unit washing machine: 200–600 RMB/unit refrigerator: 200–800 RMB/unit</td>
<td>Covering all energy-intensive appliances as AC, washing machine, refrigerator, etc.</td>
</tr>
<tr>
<td>Transportation</td>
<td>Subsidy to end-customers: pure electric car 50000 RMB/vehicle hybrid car 30000 RMB/vehicle</td>
<td>1% penetration of electric vehicles at 2015 and 5% at 2020</td>
</tr>
</tbody>
</table>

Notes: 1) according to study on cost and benefit of closing small in-efficient coal plant during the 11th FYP, a total of 32.77 billion fund is input for closing 54.07 GW small units from 2006 to 2009 [41], which translates 600 RMB/KW government fund support for closing small coal units; 2) during the 11th FYP period, a total of 235 billion RMB fund from the central government is provided in industry for energy efficiency, and resulted in about 240 million tce energy conservation capacity [42]. Though the State Council encourages local governments to provide special fund for energy efficiency also, the amount is difficult to trace. According to the fund from the central government, it is roughly calculated as 1000 RMB/tonne sce conservation realized in industry.
billion for energy efficiency investment. The massive investment requirement would pose another challenge for China to realize low carbon development.

5. Concluding remarks

Sustainable development is the inevitable choice of China. The analysis in the paper indicates that the 2020 45% CO₂ intensity reduction target is not only within the international expectation, but also self-consistent with the long-term vision of China’s overall socio-economic planning. If accomplished, it will make significant contribution to global climate mitigation. Moreover, China has formulated a host of policies to implement the target even since 2005 and made encouraging progress in the past five years.

On the other hand, the target is unprecedented and formidable in that energy conservation by technology advancement alone is not enough to ensure the accomplishment of the target. Even though the government is determined to preserve the route of energy policy during the 11th FYP, our study indicates that adjusting output structure would be imperative in the coming decade, especially in the 13th FYP. According to the above analysis, the viable policy options for China are as follows:

1. Maintain a balanced economic growth with intensified efforts to raise the share of the service industry in its economy and curb the growth of heavy industry. China must incorporate energy and environment targets within its overall socio-economic planning and coordinate energy policy with industry, taxation and finance policies to attain the maximum effects of the policy mix.

2. Develop non-fossil “clean” alternatives according to the proposed target, including nuclear, regular hydropower, wind, solar and biomass energy as early as possible to decrease primary energy emission factor. Considering the past experiences of quicker than planned economic growth, China should not just confine itself to the proposed non-fossil share target. Also, developing clean energy technology itself could serve as a very opportunity for facilitating economic output restructuring. However, to promote the take-off of renewable energy in China, the government must formulate systematic and practical policies covering upstream research & development and downstream commercialization & deployment [43].

3. Strengthen energy conservation in building and transportation sectors while the manufacturing sector still possesses vast potential. With the rising income, building and transportation sectors will consume more and more energy. By proactive measures as building codes, vehicle fuel economy standards, priority of public transportation, etc., huge energy demand could be avoided in the future.

4. Adjust the coal plant mix could still contribute large portion on energy saving since it will continue to dominate the generation mix in the coming decade. Increase energy efficiency in coal power plants by replacing outdated inefficient small-scale units with ultra-super critical and (or) cogeneration units. Implement CCS technology in commercial scale at least from 2015 in large-scale coal generation plants to provide more growth space for primary energy demand.

5. Deregulate energy market with strong determination and formulate level playing field to attract investments for private and foreign capital. Establishing strong partnerships with developed countries on low carbon energy development also would be policy priority for China.

Acknowledgment

The authors would like to appreciate the comments of two anonymous reviewers and the kind help of the Editor, which significantly enhance the quality of the paper. The work reported in the paper is funded by the Ministry of Education of China (10YJC790360), National Science Foundation of China (71173075), the Fundamental Research Funds for the Central Universities, Natural Science Foundation of Beijing (9092013) and Beijing Planning Project of Philosophy and Social Science (10BJG371). M.X. was partially supported by the U.S. Department of Energy under Award Number DE-PI0000012. The usual caveats apply.

References

Table 14

<table>
<thead>
<tr>
<th>Power industry</th>
<th>Energy efficiency</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Clean generation</td>
<td>Power grid</td>
</tr>
<tr>
<td>Industry</td>
<td>Building</td>
<td>Transportation</td>
</tr>
<tr>
<td>12th FYP</td>
<td>2081</td>
<td>1004</td>
</tr>
<tr>
<td>13th FYP</td>
<td>2274</td>
<td>1275</td>
</tr>
</tbody>
</table>

Notes: 1) coal bed gas generation and waste heat generation investment requirements are included in power generation; 2) historically, the investment on power grid in China is insufficient. During the 8th and 9th FYP periods, power grid only accounted for only 13% and 37% of total power investment, which is significantly lower than the level of developed countries (well above 50%). However, since 2008, investment on power grid has outnumbered that on power plant. With the massive investment on smart grid, we assume that the investment ratio on power plant and power grid will be 45:55 in the coming decade.

